Figuring out the cause of forensic messes is not easy and takes time

So much of what we do in forensic investigation doesn’t lend itself to clean and tidy text-book investigation and analysis.  It’s messy and difficult to wrestle to the ground as to cause.  It also takes time.

I thought this after I posted a blog two weeks ago on getting hard evidence from soft data; getting the speed of a vehicle in an accident from the images on mobile phones. (Ref. 1)  I blogged at that time on a lecture by Major Adam Cybanski, Ottawa, on a new forensic method for assessing the speed of vehicles in an accident. (Ref. 2)

If you could see some of Adam’s lecture photographs and video showing aircraft, cars and people flying through the air and crashing, you’re certain to wonder: How can you measure and analyse something like that?  Disturbing images.  Surely traumatizing for the forensic investigator to see on site.

There was one picture of an airliner – not the TransAsia flight 235 crash mentioned in the lecture but that one too – nearly vertical in the air, nose down and a few metres from hitting the ground.  An aircraft filled with passengers.

If you could see the condition of some cars after a traffic accident that Dr. Stuart Smith and others in CATAIR investigate, that includes doing crush measurements, you’re certain to wonder about this too. (Ref. 3)  I’ve helped Stu a couple of times do these measurements; not a pretty sight.

Less visually disturbing – unless you are the owner – seeing undulating floor surfaces in multistory buildings or bent steel beams in half-built bridges you might wonder: How can a forensic expert analyse odd failures like these?

I sometimes wonder too and I come from a civil engineering background specializing in geotechnical and foundation work – measuring and engineering the messy ground.  We get it done because we have our models and semi-empirical relationships developed over decades of field observation, research and engineering practice.

Models help us figure out the cause of messy failures and accidents but their development takes time and lots of thought and hypothesizing.  I’m not surprised it took Adam months to get his analysis time down to a few days from a few months. (Ref. 1) In fact, I’m surprised it came together so quickly for him.

These models and analytical procedures show up in textbooks but not right away, not until someone has figured out the mess from a lot of failures.  I had one client surprised that forensic engineers must sometimes research topics for which little is known or vary geographically.  He thought we knew everything – a nice image.

***

(CATAIR; the Canadian Association of Technical Accident Investigators and Reconstructionists)

(Model: A set of ideas and numbers, based on existing data, that describe the past, present or future state of something.  For example, how the economy might react to a change in interest rates or a type of failure or accident occurred in the built environment.  Models are updated with new data as required.  After Merriam-Webster dictionary, January, 2018)

References

  1. Getting hard evidence from soft data.  Posted January 10, 2018
  2. Cybanski, Major Adam R., Gyro Flight and Safety Analysis, Ottawa, 2017 http://www.gyrosafety.com
  3. Smith, Dr. Stuart, C. R. Tyner and Associates, Dartmouth, Nova Scotia  crtynerassociate@eastlink.ca

Comments are closed.