Sinkhole news highlights a problem that can be fixed

Routine engineering investigation – the fix – ensures sinkholes don’t undermine our buildings – the problem.

***

That was quite a picture in the newspaper a few days ago of a sinkhole that appeared last August in Oxford, Nova Scotia. (Ref. 1)  And the pictures of the sinkholes in British Columbia a few weeks ago (Ref. 2) and before that – back to Nova Scotia – some time ago in Falmouth..

Striking pictures but sad too when homes are lost, and scary at the thought of potential injuries and death.

But it’s time to stop.  There’s no need for the formation of sinkholes to surprise anyone nor pose a risk..  Nor be a “…a money pit”. (Ref. 1)  There would be no news and no pictures if experienced engineers were involved before these areas were developed.  And every chance some of these areas would have been undeveloped.  Engineers would carry out a standard geotechnical investigation of the ground at a site proposed for construction.  Simple as that.

The news story mentioned a geophysical survey.  That’s an engineering technique that’s been around a long time.  The fact that this is sinkhole country – Karst terrain – has been known a long time too.

Karst is an irregular limestone area with sinkholes, underground streams and caverns. (Ref. 3)

Remote sensing geophysical surveys – sort of like MRIs in medicine – detect features in the ground of interest to land owners.  Features like voids or conditions conducive to the formation of voids.  Sinkholes start as voids in the ground.

Limestone bedrock, gypsum and salt dissolve in the water in the ground to form voids, caverns and underground streams.  The voids get larger with time and eventually the top, or roof of the void, appears at the ground surface – a sinkhole. The voids are said to migrate to the ground surface.

The most recent picture shows red soil around the perimeter of the sinkhole.  This is glacial till – soil deposited by glaciers 1,000s of years ago.  The soil is heavy and would cause the top of a void to break and appear at the ground surface sooner rather than later.

Investigating undeveloped Karst country for sinkholes

What would an engineer do if asked to investigate the foundation conditions at a proposed construction site?  For example, the site of a building, or any of the structures in an urban area, or a residential subdivision or a strip mall.  This would be an engineer experienced in geotechnical or geological work.

They’re not always asked – and it appears not always in Karst country – but what would he do if he were?

He would first check.the published geology maps and aerial photographs of the area available to all of us.  It’s called terrain analysis in engineering.  He would see in the maps that a large area of Nova Scotia – many square kilometres – is underlain by Karst terrain.  He would also see in the photographs evidence of large sinkholes like the one in the picture.  He would tell you that the area is susceptible to the formation of sinkholes.  He would also tell you that he can’t predict where the sinkholes will appear in a large area.

But tell him approximately where you want to construct a subdivision or strip mall and he’ll give you a pretty good idea of the risk of sinkhole development in a small area like that.  Not the location of all future sinkholes but the location of some, and the risk of others.  He would do this after carrying out a geophysical survey.  The survey could be expensive for an area proposed for a subdivision or strip mall.

I did a geophysical survey of an airport runway on South Andros Island in the Bahamas one time.  I was looking for voids that might form sinkholes.  A runway is not unlike a residential street or a strip mall.  You can be sure I ran a lot of closely spaced survey lines down the runway looking for voids.

Tell the engineer precisely where you want to build a house, a multistory building, a bridge, a road, etc., a tiny area, and he will tell you if and where sinkholes will form and undermine your structure.  He would do a geophysical survey.  This wouldn’t be that expensive for a single structure and a good investment considering construction costs.  You might consider relocating the structure after the survey..

If the risk of sinkholes forming is low and you still want to build there then he would drill boreholes at the location of your structure and any features of interest found during the geophysical survey.  Boreholes retrieve samples of bedrock like limestone or indicate when the borehole passed through a void.  It’s called ground proofing in engineering work that relies on non invasive, non destructive geophysical surveying and terrain analysis.

Summarizing, this is what the experienced engineer might do depending on what you need:

  1. Terrain analysis of a large area of Karst country – square kilometres in size – using published maps and photographs
  2. Geophysical survey of a small area possibly with a few boreholes
  3. Geophysical survey of a tiny area  a proposed construction site – plus some boreholes  .

It wouldn’t take a “money pit” of money to investigate for sinkhole-forming voids if you know the precise location of your proposed structure.

Investigating developed Karst country for sinkholes

If you are concerned about the stability of a developed area, particularly foundation stability, then, depending on the size of the area and the preciseness of the information wanted, the engineer would go through the above steps.  The emphasis would be on Step #2 if you are concerned about a small area.  Or Step #3 if you are concerned about a single structure and wanted precise information.

***

The approach for developed or undeveloped land would be much the same – that of a fairly routine engineering investigation by an experienced person.  It wouldn’t be so expensive for a single structure, a tiny area – a few 1,000s of dollars rather than many 10,000s.  But more, of course, for a larger area, particularly if a lot of precise information was wanted.

It wouldn’t be so newsworthy either particularly if undeveloped land was being investigated.  The reporter’s eyes would glaze over at the thought of covering an engineering story like that.

That’s where we need to get to in Karst country – investigate before at reasonable cost not after when newsworthy sinkholes and problems develop.

References

  1. The Chronicle Herald, Thursday, March 14, 2019 page A3
  2. What’s wrong with this (sinkhole) picture near Vancouver. Posted February 20, 2019
  3. Merriam-Webster dictionary, March, 2019

 

A jargon-free handbook for lawyers, judges, insurance claims managers and their representatives

Some of you might be interested in the handbook, Practical Guide to Comparative Advertising: Dare to Compare, by Ruth M. Corbin et al. 1st edition 2018. (Ref. 1)  I haven’t read the book but mention it because Ruth Corbin writes well and jargon-free

I know this because I’ve read some of her work that is more closely related to my forensic engineering practice. (Refs 2, 3)  In addition, this is a handbook and they’re always nice to have on the shelf.  I also met and heard Ruth speak and present at the Expert Witness Forum East in Toronto last year.

Comparative advertising can be defined as a marketing strategy in which a company’s product or service is presented as superior when compared to a competitors. (Ref. 4)

Google the title and carefully read Ruth’s description of the contents and the handbook’s key features and her opinion of the readership.  You’re certain to be covered in the latter.  If I were one of you – a civil litigation lawyer, a judge, an insurance claims manager, an adjuster, a representative – and not a forensic engineer, I would take a good look at this handbook

Why am I mentioning this book?  Because I like to see good writers get published.  Also because the book does relate to the practice of some of you.  It’s by an author who I know writes well and, in addition, it’s a handbook – they’re always easy to understand.  Finally, I’m certain Ruth would associate with co-authors who are equally clear writers.

References
  1. Practical Guide to Comparative Advertising: Dare to Compare, by Ruth M. Corbin et al. 1st edition 2018.
  2. Corbin, Ruth M., Chair, Corbin Partners Inc. and Adjunct Professor, Osgoode Hall School, Toronto, Breaking the Expert Evidence Logjam: Experts Weigh In, presented at Expert Witness Forum East, Toronto, February, 2018 (Google it)
  3. Corbin, Ruth M., The Hot-tub Alternative to Adversarial Expert Evidence, The Advocates Journal, Spring, 2014 (Dr. Corbin is Chair, Corbin Partners Inc., Ontario)
  4. Investopedia March 19, 2019, 10.38 am.  See also Wikipedia
Bibliography
  1. “Hot-tubbing” experts reduce cost of civil litigation and ensure objectivity  Posted March 31, 2018
  2. How experts are helping break the expert witness logjam.  Posted April 30, 2018
  3. How you can help break the expert witness logjam.  Posted May 4, 2018

 

.

 

Update: Where does an expert’s initial hypothesis come from?

I commented last month on the basis for an expert’s hypothesis during the merit assessment stage and gave a few examples. (Ref. 1) You may remember that the hypothesis or initial oral report comes from:

  1. Your briefing
  2. The expert’s experience
  3. Published data on causes

The examples of published data were quite informative. (Refs 2, 3, 4) The most detailed was about the 209 ways a building can fail – useful information and readily available to the expert when assessing cause. (Ref. 2)

There’s more.  A building is only one type of structure in the built environment.  There are actually about 18 different types as listed below. (after Ref. 4)  Each structure can fail in several different ways.  The causes have been researched and published for most of the 18 like the 209 causes for a building.

(It was Ref. 4 that prompted this blog update – it extends our understanding of failure and accidents to all types of structure)

Your urban environment where you live contains some or all of the following types of structure:

  1. Bridges
  2. Dams
  3. Tunnels
  4. Roads and highways
  5. Embankments
  6. Excavations
  7. Natural, and man-made fill slopes
  8. Buildings like residential, commercial, industrial and multi-story (There are more buildings in the world than any other type of structure)
  9. Foundations
  10. Basements
  11. Retaining walls
  12. Infra structures like pipelines
  13. Water, storm and sewer pipelines
  14. Tanks
  15. Storage bins
  16. Chimneys and stacks
  17. Towers; both guyed and free standing

The causes of failure of these structures are categorized according to the:

  • Structure – those listed above and again in the Appendix
  • Main Component in the structure – beam and slab, an arch, long span roof, etc
  • The component’s Material – steel, concrete, wood, masonry, etc.

The categorization is more detailed and technical than this but the above gives you an idea..

(The Appendix lists the different structures, their components and component materials)

The researchers identified the several different ways each Structure can fail.  For example, What causes bridges to fall down?  Towers to topple?  The foundations of multi-story buildings to settle and subside?

They then looked closer at the main Component(s) in each structure and identified the different ways these failed.  For example, What are the different causes of cracks in concrete floor slabs?  Why do roofs collapse?

Finally, they looked closer still at the different Materials used in the components of structures and how they failed.  Why does steel break?  It certainly does at times.  What causes concrete-wood connections to come apart?

The result is a wealth of published information for the expert to consider when forming a hypothesis – 100s of different ways a structure, it’s components, and the component’s materials can fail in the built environment.  All researched and published and available to guide the expert as you brief him during the merit assessment stage.

He’s thinking Structure, Component, Material as you talk and forming an initial hypothesis, or, more correctly, an initial oral report to guide you on whether to take the case or in assessing the claim.  It might be a rough report but it’s well founded on a lot of published data – and better than not talking to an expert.

(It occurs to me this late hour that similar data could be compiled and published on the causes of personal injury accidents like slip, trip and fall accidents)

References

  1. Where does an expert’s initial hypothesis come from?  Posted February 25, 2019
  2. Nicastro, David H., ed., Failure Mechanisms in Building Construction, ASCE Press, American Society of Civil Engineers, Reston, Virginia 1997 (Readily available by interlibrary loan from Memorial University, Newfoundland)
  3. How many ways can a building fail, and possibly result in civil litigation or an insurance claim? Posted July 10, 2014
  4. Janney, Jack R., Guide to Investigation of Structural Failures, ASCE (American Society of Civil Engineers) 1979, 1986

Appendix

(The following lists are after Ref. 4 with some additions based on what I’ve seen over the years)

Structure: Causes of failure have been researched and identified according to the following types of structure:

  1. Bridges
  2. Dams
  3. Tunnels
  4. Highways
  5. Embankments
  6. Excavations
  7. Natural, and man-made fill slopes
  8. Buildings like residential, commercial, industrial and multi-story (There are more buildings in the world than any other type of structure)
  9. Foundations
  10. Basements
  11. Retaining walls
  12. Infra structures
  13. Water, storm and sewer pipelines
  14. Tanks
  15. Storage bins
  16. Chimneys and stacks
  17. Towers; both guyed and free standing

Component: Causes of failure have been researched and identified according to the main types of components in the different structures

  1. Arches, rigid frames and trusses
  2. Suspension structures
  3. Long-span roofs
  4. Beam/Slab combinations
  5. Flat plate and flat slab
  6. Multistory rigid frames
  7. Thin shells and membranes
  8. Cantilevers

Material: Causes of failure have been researched and identified according to the materials used to make the different components in the structures, and the connections between the materials

  1. Steel
  2. Concrete
  3. Masonry (structural clay and concrete block)
  4. Wood
  5. Plastic
  6. Failure causes classified by connection type
  7. Steel to steel connections
  8. Steel to concrete composite connections
  9. Monolithic concrete member intersections
  10. Precast concrete to precast concrete connections
  11. Pre-stressed concrete
  12. Masonry connectors
  13. Timber fasteners and adhesives
  14. Expansion type connections